

The Solutions Network

Rochester, New York

World Class O&M – Metering Session

Natale DiDonato, ConEdison Solutions

Jon Duke, Tetra Tech EM Inc.

Session Overview

- Identify when metering makes sense
- How to go about making the decision
- How to go about implementing the decision
- What you can expect to get out of a metering installation

4 Define Your Objectives

- Identify Conservation Measures
- Correct Costly Operating Practices
- Submeter to foster conservation
- Allocate costs
- Identify reliability issues PQ
- Generate revenue through demand response
- Comply with legislated/mandated energy programs
- Facilitate commodity purchasing
- Develop enterprise-wide picture Facility benchmarking www.energy200**.ee.doe.gov

Who Should Meter? – Cost Benefit

Develop a simple cost benefit analysis:

A 1 megawatt load in the Northeast uses about \$300,000 to \$500,000 per year in electric costs.

A basic, advanced metering installation may cost \$5,000 to \$15,000 over five years.

This represents less than 1% of energy costs.

For a smaller facility, 100kw load, the relative cost will be about 5% of your energy \$.

How big is your facility. Can you quantify the value to be realized?

Who Should Meter?

- Facility Flexibility Can I change my process to take advantage of the knowledge gained?
- Cost Allocation Will the tenants conserve if they are accountable for their usage?
- Decision Support Will the additional information help me sell a project?
- Facility Benchmarking Are some of my facilities negatively impacting my energy portfolio?
- Revenue Generation Is it practical to utilize my emergency generator for load curtailment programs?

Who Must Meter

- Federal Metering Provisions in Energy Policy Act of 201x
 - All Federal buildings shall be metered or submetered
 - Metering should be "advanced"
 - ➤ Guidelines within 180 days of legislation
 - Metering costs and potential savings will guide applicability
 - Also, consider potential for conservation,
 O&M savings, energy procurement
 participation
 - Agency plans within six months of guidelines

- What can you do with your profile data
 - > Trending
 - Baselines
 - Normalize to weather
 - Identify demand spikes that increase bills
 - Measure compliance to demand response programs
- Energy Profile Analysis Tool
 - > Live tour
 - Where can I get profile information
 - Inexpensive alternatives to installing advanced metering

www.energy2004.ee.doe.gov

Basic Components of A Metering System – The Demand Profile

Bill Period Dates

Customer Name, Facility Name, Account # 100000000001

Profile Analysis Tool – Monthly Profile

Profile Analysis Tool – Energy vs. Weather

Daily Consumption for the January Bill Period

Customer Name, Facility Name, Account # 100000000001

Profile Analysis Tool – Demand vs. Weather

Daily Peak Demand for the January Bill Period

Customer Name, Facility Name, Account # 10000000001

Avg. Demand by Day of Week

Daily Average Demand Profiles for the January Bill Period

Customer Name, Facility Name, Account # 100000000001

Hour Starting

- A meter monitors energy usage and provides a data output containing energy information.
- A communication device receives this data and converts it to a stream or file of formatted data.
- The data file/stream is transferred via Ethernet, RF, Modem, Cellular to a base station/server.
- Data base is accessed via web enabled software

Sample - Metering Architecture

Energy Analysis Software Modules

Trending	Tariffs
Profile analysis	Enterprise view
Normalization	Monthly bills
Billing/budgeting	Demand response
Security	Aggregation

Energy Analysis Software

- Web based
- Commercial Relationship
 - Client/server or ASP
 - Software on customer's server
 - Source code issues
 - Maintenance
 - High up front costs
 - Application Service Provider
 - Cheaper up front costs and with low volume
 - Subscription fee

Data

- > Who owns it?
- Open architecture vs. proprietary.

Economics of Metering

Typical Costs of Metering Installation – Can you provide any of these services?

- Audit to determine customer needs and equipment requirements
- Engineering design
- Equipment purchasing and assembly
- Installation labor
- Commissioning
- Maintenance
- Software

Economics of Metering

Typical Installation Costs

- A single utility meter with pulse outputs and one year of web based presentation/analysis software \$5K-\$10K.
- A utility and gas meter with 12 utility sub-meters \$15K-\$40K plus \$1,000 to \$2,000 per year for web-based software subscription.

Advanced Metering

- Operations and Maintenance
 - Building management systems
 - Combine heat and power
 - > Emergency generation
 - > Remote control
 - > 0&M oversight www.energy2004.ee.doe.gov

Procurement Process

- Encourage development of standardized RFP for Federal agencies
- RFPs for large agencies may include a design phase that enables the responder to design an agency-wide approach
- Start off with a pilot
- Put equal emphasis on meters and software

www.energy2004.ee.doe.gov

More Information

FEMP O&M Web Site on Advanced Metering

http://www.eere.energy.gov/fe mp/technologies/om_advme tering.cfm

Includes NREL report – excellent source of information.

Security Issues

Dial up

- No Connection to Internet very secure
- Difficult to get data more than once per day
- Higher Cost cost depending on size of data and communications costs
- Enables ASP relationship and lower software costs

Ethernet

- Data transferred in open (encryption can be employed)
- Data available instantly
- Perception of security not as high
- Reality? As long as data is pushed out, security is high.
- > Fnables ASP

Security Issues

- DSL/Cable/High Speed Internet Connection
 - No connection to Customer Network very secure
 - Higher Cost

Customer Network

- Customer owns software
- Software resides on the customer's server
- Data is pushed from behind firewall, no outside connection necessary.
- Data is sent using well know protocols (FTP,SMTP)
- Devices can be segregated from rest of network
- Lower Cost but software costs may be higher
- High internal security

Case Study: NAS North Island

NAS North Island "Before" (c. 1990)

❖ Profile

- One of Navy's major carrier ports
- >3,000 acre air/sea/industrial complex
- >10 million SF of facilities
- >population 30,000
- Host to 74 commands
- Host utility bill \$12M

NAS North Island "Before"

* "Before" Metering:

- Navy Public Works Center (PWC) provided utilities
- Only reimbursable tenants metered, e.g., ships
- > Tenants paid for metered usage
 - Host paid for everything else
- Virtually no host meters
- No way to convey meter data to energy managers
 - E.g., Bldg 1482 metered but data unavailable

NAS North Island "Before"

❖Impact:

- Public Works Officer and energy manager highly motivated but "working in the dark"
 - Unable to focus limited resources
 - Unaware of high-return opportunities
 - Forced to rely on "broadcast" measures
- ≥ Ineffective load-sheds
- No way to measure program effectiveness
- No way to check utility bills
- No way to M&V projects
- No effective way to manage utility costs

NAS North Island "After" (> 2000)

- NAS North Island even more vital
 - Now a major nuclear carrier port
- Metering improvements
 - Near-100% metering at facility level
 - Electricity, water, irrigation, gas
 - Most electric meters "time of use"
 - Major users metered for steam, air
 - On-line access to meter & billing data, electrical load curves
 - Data & charts readily available to all
 - Reports tailored to customers' needs

Impact of meters:

- Base now able to focus resources
 - Pin-point & correct problems & adverse trends
 - Identify high-return targets for building tune-ups, projects, management action
 - Prioritize efforts
 - identify billing errors
- Building operators have data they need to operate buildings efficiently
- Base can measure energy performance, take action & provide feedback
- Base can M&V projects, ensure continued savings
- Base can effectively manage utility costs

- Energy management tools available "after"
 - >MVWeb load
 - TOU meters
 - Compare
 - Periods
 - Buildings
 - Flexible

- Energy management tools available "after"
 - >On-line CUBI
 - Cost
 - Units
 - Monthly
 - Cumulative
 - By meter
 - All utilities

Energy management tools available "after"

> On-line CUB File Edit View Favorites Tools Help

Energy management tools available "after"

On-line "Push Bills" to tell customers exactly

File Edit View Favorites Tools Help

what they are Address https://extranet.pwcsd.navy.mil/cubic/pushbill/content/clientReportFrame.aspx?p1=N00242198p2=76528182

_ & ×

Energy management tools available "after"

"Push Bill" spreadsheets to sort & analyze data, identify targets & anomalies, find billing errors,

											FY04
	nrior	itiz 🔾	effgr Çfr	te	% Incr			Incr	YTD	YTD	Budget
	PilOi	41 6-200 3	YTD120041	Incr (Decr)	(Decr)	2003 COST	2004 COST	(Decr)	2003	2004	Impact of
BASE	Bldg	(KWH)	(KWH)	(KWH)	(KWH)	YTD	YTD	Cost	\$/KWH	\$/KWH	Incr (Decr)
FISC	1	3,174,900	3,798,400	623,500	20%	\$568,588	\$517,475	(\$51,113)	\$0.179	\$0.136	\$84,943
FISC	12	285,700	486,000	200,300	70%	\$52,235	\$67,454	\$15,219	\$0.183	\$0.139	\$27,800
NAVSTA	55	450,200	602,800	152,600	34%	\$73,375	\$74,240	\$865	\$0.163	\$0.123	\$18,794
NAVSTA	33 39	702,700	837,200	134,500	19%	\$41,425	\$113,962	\$103,199	\$0.059	\$0.136	\$18,309
NAVSTA	116	929,200	1,046,800	117,600	13%	\$154,777	\$132,314	(\$22,463)	\$0.167	\$0.126	\$14,864
PHWY	127	506,400	617,300	110,900	22%	\$118,129	\$117,555	(\$574)	\$0.233	\$0.190	\$21,119
NAVSTA	3418-A	187,200	288,400	101,200	54%	\$29,463	\$35,300	\$5,837	\$0.157	\$0.122	\$12,387
NAVSTA	TUG-BOATS	0	93,800	93,800	n/a	\$0	\$10,989	\$10,989		\$0.117	\$10,989
NAVSTA	STLTS-X,Y,Z	52,900	135,700	82,800	157%	\$8,210	\$15,638	\$7,428	\$0.155	\$0.115	\$9,542
NAVSTA	3338	106,600	184,800	78,200	73%	\$20,325	\$23,432	\$3,107	\$0.191	\$0.127	\$9,915
NAVSTA	3143	1,051,700	1,129,700	78,000	7%	\$176,693	\$140,998	(\$35,695)	\$0.168	\$0.125	\$9,735
NAVSTA	261	0	72,200	72,200	n/a	\$0	\$8,948	\$8,948		\$0.124	\$8,948
NAVSTA	3290	665,300	737,500	72,200	11%	\$107,847	\$89,266	(\$18,581)	\$0.162	\$0.121	\$8,739
NAVSTA	3202	596,900	668,500	71,600	12%	\$98,917	\$84,769	(\$14,148)	\$0.166	\$0.127	\$9,079

- Energy management tools available "after"
 - Knowledgeable CUBIC staff making continuous improvements
 - Faster, more useful reports
 - More capabilities
 - >Accessible CUBIC data base
 - Capable CUBIC techs
 - Keep allocations current
 - Make the system work
 - Respond to user concerns